Measurement of Cerebral White Matter Perfusion Using Pseudocontinuous Arterial Spin Labeling 3T Magnetic Resonance Imaging – an Experimental and Theoretical Investigation of Feasibility

نویسندگان

  • Wen-Chau Wu
  • Shu-Chi Lin
  • Danny J. Wang
  • Kuan-Lin Chen
  • Ying-Ding Li
چکیده

PURPOSE This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL) 3T magnetic resonance imaging (MRI) at a relatively fine resolution to mitigate partial volume effect from gray matter. MATERIALS AND METHODS The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28 ± 3 years) were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (τ = 1000, 1500, 2000, and 2500 ms) and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms), at a spatial resolution (1.56 x 1.56 x 5 mm(3)) finer than commonly used (3.5 x 3.5 mm(2), 5-8 mm in thickness). Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied τ, PLD, and transit delay. RESULTS Based on experimental and numerical data, the optimal τ and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2) to support perfusion measurement in the majority (~60%) of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included. CONCLUSION PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts.

Arterial spin labeling (ASL) is a completely noninvasive magnetic resonance imaging (MRI) perfusion method for quantitatively measuring cerebral blood flow utilizing magnetically labeled arterial water. Advances in the technique have enabled the major MRI vendors to make the sequence available to the clinical neuroimaging community. Consequently, ASL is being increasingly incorporated into the ...

متن کامل

Voxel-Wise Perfusion Assessment in Cerebral White Matter with PCASL at 3T; Is It Possible and How Long Does It Take?

PURPOSE To establish whether reliable voxel-wise assessment of perfusion in cerebral white matter (WM) is possible using arterial spin labeling (ASL) at 3T in a cohort of healthy subjects. MATERIALS AND METHODS Pseudo-continuous ASL (PCASL) with background suppression (BS) optimized for WM measurements was performed at 3T in eight healthy male volunteers aged 25-41. Four different labeling sc...

متن کامل

Regional reproducibility of pulsed arterial spin labeling perfusion imaging at 3T

Arterial spin labeling (ASL) is a promising non-invasive magnetic resonance imaging (MRI) technique for measuring regional cerebral blood flow (rCBF) or perfusion in vivo. To evaluate the feasibility of ASL as a biomarker for clinical trials, it is important to examine test-retest reproducibility. We investigated both inter- and intra-session reproducibility of perfusion MRI using a pulsed ASL ...

متن کامل

Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla.

High-field arterial spin labeling (ASL) perfusion MRI is appealing because it provides not only increased signal-to-noise ratio (SNR), but also advantages in terms of labeling due to the increased relaxation time T(1) of labeled blood. In the present study, we provide a theoretical framework for the dependence of the ASL signal on the static field strength, followed by experimental validation i...

متن کامل

Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system.

Several methods are now available for measuring cerebral perfusion and related hemodynamic parameters using magnetic resonance imaging (MRI). One class of techniques utilizes electromagnetically labeled arterial blood water as a noninvasive diffusible tracer for blood flow measurements. The electromagnetically labeled tracer has a decay rate of T1, which is sufficiently long to allow perfusion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013